

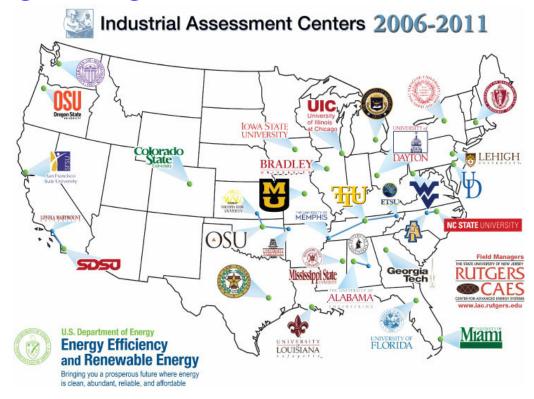
Industrial Assessment Center (IAC) Program

Beka Kosanovic, Ph.D.

Industrial Assessment Center

Mechanical & Industrial Engineering Department

University of Massachusetts - Amherst



Cleaner Technology and Energy Efficiency: Structuring a Competitive Advantage
April 5, 2007

Holiday Inn, Boxborough, MA

Beginning in 1984 with four Schools

 For more information on IAC program and participating schools visit:

http://iac.rutgers.edu/database/centers.php

Industrial Assessment Center at the University of Massachusetts

- Provides assistance to New England Industry since 1984
- US DOE Funding allows the IAC Program to provide no cost energy conservation, waste prevention and productivity assistance to small and medium sized industrial firms within S.I.C. 20 through 39

IAC Program Goals

- Reduce Industrial Energy Use
- Reduce waste and prevent pollution in manufacturing operations
- Raise productivity
- Lower Operating Costs
- Increase Profitability
- Provide Professional Training for Students

Client Criteria

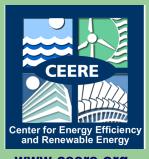
- Have Annual Energy Costs Less Than \$ 2.5
 Million
- Have Gross Sales Less Than \$100 Million
- Have Less Than 500 Employees
- Have No In-house Energy Staff
- Be Within 150 Miles of Amherst, MA

UMASS Clients 1984-2004

- Over 615 plants visited since 1984
- Over \$11.3 billion in gross annual sales
- \$287 million in annual energy costs
- 76,500 employees
- Over 2,500 recommendations with \$62,000 average annual cost savings per assessment
- \$125,000 average savings per assessment in 2005-2006

and Renewable Energy

www.ceere.org


Assessment Scenario

- Identify Interested Plant
- Schedule Plant Visit
- Obtain Historic Data
 - •Electrical
 - •Fuel Oil
 - Natural Gas
 - Water
 - Waste
- Visit Plant with Assessment Team
- Collect Plant Data
- Plant Review With Client
- Identify Assessment Recommendations
- Estimate Energy and Waste Savings
- Find Productivity Gains
- Prepare Report for Client

Plant Energy Use

- How Do They Use It?
- When Do They Use It?
- Should Its Use Be Modified?
- Are There More Efficient Methods?
- Can They Use Their Waste Energy?

Plant Productivity

- What are Materials Handled?
- Where Do Bottle-necks Occur?
- Can Set-up Processes be Modified?
- Is There Inactive Production Use or Space?

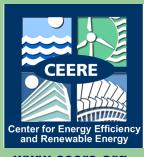
Identifying Effective Energy Saving Options

- Major energy users
- Major pieces of equipment
- Motors
- Boilers and Furnaces
- Compressors/Chillers
- Hot exhausts
- Compressed air leaks
- Cooling Towers

- Variable Frequency Drives
- Energy-efficient Motors
- Consider CHP
- Energy Management Systems
- Steam Trap Replacement High-efficiency Boiler
- Chiller Water Plant Operation
- Process Heat Recovery

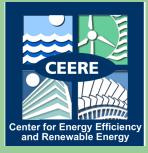
Top \$ Savers

- Switch From Electrical To Fossil Fuels
- Convert To VSD For Pumps & Blowers
- Process Heat Recovery
- Use High Efficiency Lamps & Ballasts
- Reduce Fluid Flows
- Use Energy Efficient Equipment
- Consider Cogeneration
- Insulate Equipment



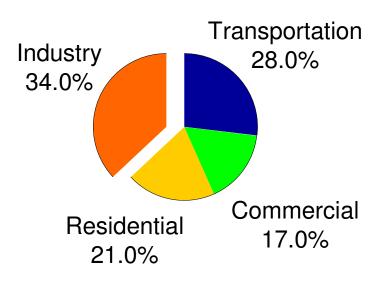
Example:

Summary of Assessment Recommendations


Assessment	Annual Savings	Annual Cost	Implementation	Payback
Recommendation	Annual Savings	Savings	Cost	Period
Implement CHP	Electricity: 4,938,100 to Demand: 5,449 to Reliability: Natural Gas: -39,580 MM Miscellaneous: Total: -22,726 MM	\$27,245 \$120,000 Btu -\$316,244 -\$99,886	Capital: \$ 960,460 Other: \$ 366,943 Total: \$ 1,327,403	8 years
2. Install VSD on Air Makeup Units	Natural Gas: 6,985MM Electricity: 294,200 k	Btu \$ 55,810	Capital: \$15,040 Other: \$3,160 Total: \$18,200	3 months
Install VSD on Press Hydraulics	Electricity: 742,500 1 Demand: 1,428 1		Capital: \$ 122,544 Other: \$ 35,361 Total: \$ 157,905	2.2 years
Replace Lighting Fixtures and Install Occupancy Sensor	Electricity: 314,000 k Demand: 604 k		Capital: \$ 9,815 Other: \$ 8,735 Total: \$ 18,550	7 months
Convert Electric Mold Preheat to Natural Gas	Electricity: 326,800 k Demand: 448 k Natural Gas: -1,310 MM	W \$ 2,240	Capital: \$ 14,250 Other: \$ 3,185 Total: \$ 17,435	10 months
6. Install Smaller Following Compressor	Electricity: 93,600 k ² Demand: 753 k		Capital: \$ 27,000 Other: \$ 2,888 Total: \$ 29,888	2.5 years
7. Turn Off Oven Exhaust when Cycle is Over	Natural gas: 1,166 MMI Electricity: 17,000 k Total: 1,224 MM	Wh \$ 1,496	Capital: \$ 720 Other: \$ 4,608 Total: \$ 5,328	6 months
8. Recover Compressor Waste Heat	Nat. Gas: 1,336 MM	Btu \$10,675	Capital: \$ 3,325 Other: \$ 1,350 Total: \$ 4,675	6 months

Example (Cont.):

Implement Temperature Setback	Natural Gas:	1,190 MMBtu	\$ 9,508	Capital: Other: Total:	\$ 115 \$ 45 \$ 160	1 week
10.Reduce Platen Temperature when Idle	Electricity:	58,700 kWh	\$5,166	Capital: Other: Total:	\$ 0 \$ 3,100 \$ 3,100	7 months
11.Install Free Cooling for Scrubber	Electricity: Demand:	38,600 kWh 14 kW	\$ 3,397 \$70 \$ 3,467	Capital: Other: Total:	\$ 6,900 \$ 1,400 \$ 8,300	2.5 years
12.Install VSD on Process Water Pump	Electricity: Demand:	32,200 kWh 60 kW	\$ 2,834 \$ 300 \$ 3,134	Capital: Other: Total:	\$ 4,629 \$ 1,800 \$ 6,429	2 years
	Electricity: Demand: Natural Gas: Reliability: Miscellaneous Total:	6,855,700 kWh 8,756 kW -30,213 MMBtu s: -6,814 MMBtu	\$ 603,303 \$ 43,780 \$ 241,402 \$ 120,000 \$ 99,886 \$ 425,795	Capital: \$3 Other: \$ Total: \$1	432,575	



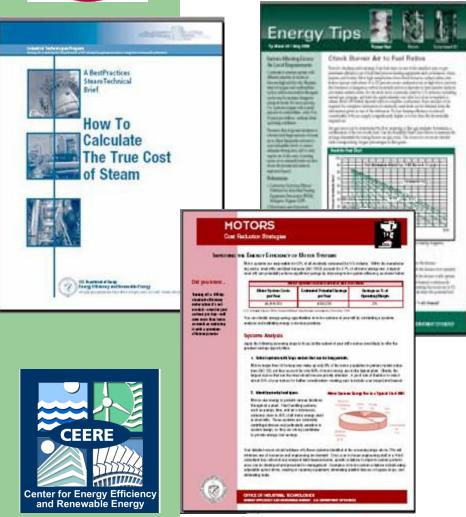
"Save Energy Now" Initiative

Industry: Critical to National Energy Policy

- 1/3 of U.S. energy consumption
- More than 40% of U.S.
 natural gas demand
- ~28% of U.S. electricity demand
- Energy is key to
 economic growth and
 maintaining U.S. jobs in
 manufacturing

2004 Energy Use*

*Includes electricity losses


Source: DOE/EIA Monthly Energy Review 2004 (preliminary)

www.ceere.org

Information, Tools and Training

- Tip sheets, case studies, brochures, technical briefs etc.
- Energy Matters newsletter
- Industrial Technologies Monthly e-bulletin
- Software tools
- Training workshops and webcasts
- Web sites
- New:
 - Packets of Information for Plants
 - Save Energy Now CD

ITP BestPractices Tools

- Process Heating
 - PHAST (Process Heating Assessment and Survey Tool)
 - NxEAT (NOx and Energy Assessment Tool)
 - Combined Heat and Power Application Tool
- Steam Systems
 - SSST (Steam System Scoping Tool)
 - SSAT (Steam System Assessment Tool)
 - 3E Plus Insulation Assessment Tool

ITP BestPractices Tools Continued

- Motor Driven Systems
 - CWSAT (Chilled Water System Assessment Tool)
 - AirMaster + (Compressed air system assessment tool)
 - FSAT (Fan System Assessment Tool)
 - MotorMaster + (Motor management tool)
 - PSAT (Pumping System Assessment Tool)
 - ChemPEP (Plant Energy Profiler for the Chemical Industry)

Questions?

Contacts:

Beka Kosanovic Ph.D. 413-545-0684

kosanovi@ecs.umass.edu

Michael Stocki MS, CEM 413-577-4726

mstocki@ecs.umass.edu

www.ceere.org/iac

